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Key Points

Forward predictive sampling is a new technique for finding
an objective posterior.
In this sort of predictive modeling the dialog between
Statistician and Scientist is how to update a predictive
model rather than selecting prior and likelihood.
In this conceptualization of the Statistician-Scientist dialog,
modeling means ensuring that predictive updates don’t
drift from the data generator rather than finding a likelihood
(to eliminate bias ) or prior selection (to summarize
pre-experiemental information).
Uncertainty quantification is derived from the unseen data.
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Setting

1 Fundmental Equation:

π(θ | yobs) =

∫
π(θ | ycomp)p(ymis | yobs)dymis.

The focus is the posterior predictive p(ymis | yobs).
2 To model the data, it is enough to specify p(ymis | yobs)

directly; the prior does not appear.
3 Therefore seek objective predictives not objective priors.
4 Use EDF to get a one-step-ahead objective predictive:

P(Yn+1|y1:n) = (1/n)
n∑

i=1

δyi

Predictives for Yn+2, Yn+3 etc. similar.
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Procedure

The outcomes from the one-step ahead predictives give

Yn+1:∞ ∼ p(yn+1:∞|y1:n) = p(ymis | yobs)

Feed these into the Fundamental Equation to find the
posterior π(θ | yobs).
Theory: If we have exchangeable data y1:n from density
mn. De Finetti tells us ∃ pθ, π(·) so that

mn(y1:n) =

∫
π(θ)pθ(y1) · · · pθ(yn)dθ.

Now, π(θ|yobs) = π(θ|y1:n) is well-defined.
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Algorithm I

Given π and pθ we can form m(yn+1|y1:n):

m(yn+1|y1:n) =

∫
pθ(yn+1)π(θ|y1:n)dθ

Draw a yn+1 from m(yn+1|y1:n). Now we we have y1:n+1
and m(y1:n+1) = m(yn+1|y1:n)m(y1:n).
So, we could in principle form (but we don’t)

π(θ|y1:n+1) = π(θ)pθ(y1:n+1)/m(y1:n+1).

In fact, for objectivity, we use the predictive EDF in place of
m(yn+1|y1:n)’s to generate yn+1.
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Algorithm II

Using the posterior we could find find

θ̄n+1 = E(Θ|y1:n+1) =

∫
θπ(θ|y1:n+1)dθ

(but we don’t). We find θ̄ using the outomes of the
predictive EDF’s.
Repeat this procedure N times for n + 1, n + 2, n + 3, and
so on up to n + N to get θ̄n+N .
Write θ̄n+N = θ̄n+N,1 and repeat the above procedure M
times to get the sequence θ̄n+N,1, . . . , θ̄n+N,M .
Use the sequence of length M to form π̂(θ|y1:n).
Can show π̂(θ|y1:n)→ π(θ|y1:n) in various modes – in m.
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Missing data

Original paper on reference priors (JRSSB 1979)
described missing data as the result of infinite repetitions
of an experiment that we didn’t do.
In particular, asymptotically maximizing

EmD(w(·)‖w(·|Y n))

over all the missing data for each n gives the prior w that
makes the prior and posterior as far apart as possible in
expected (in m) KL distance.
wopt is defined asymptotically and ensures the missing
data is maximally informative, in m.
This is the same concept of missing information and mode
as used here. Maybe we should think this way more often.
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Martingales

Easy to see that Emπ(θ|Y1:n) = π(θ). So, updating adds no
information under m.
More is true: E(π(θ|Y1:n+1)|Y1:n) = π(θ|Y1:n). So the
posterior density is a martingale under m.
So is any predictive: E(mn(·|Y1:n+1)|Y1:n) = m(·|Y1:n).
This is typical for conditioned quantities that have a limit,
e.g., have finite absolute moments.
Thus: Same is true if we replace π(θ) by π(θ|y1:n) and
adjust the conditioning accordingly.
Not true under IID models like pθ.
Thus, E(Θ|y1:n) is a martingale under m and converges as
n→∞ – to what? Spoiler: Θ.
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Let’s look at convergences under m

If θ ∈ A then under Pθ,

Π(A|y1:n) =

∫
A π(θ)p(y1:n|θ)dθ∫
Ω π(θ)p(y1:n|θ)dθ

→ 1.

If θ ∈ Ac then under Pθ,

Π(A|y1:n) =

∫
A π(θ)p(y1:n|θ)dθ∫
Ω π(θ)p(y1:n|θ)dθ

→ 0.

In m, Lijoi et al. (2004) Theorem 1 gives ∃ ĝ random

Π(A|y1:n)→ Iĝ(A).
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Getting back Θ

Recall for any A,
m(y1:n) =

∫
A π(θ)p(y1:n|θ)dθ +

∫
Ac π(θ)p(y1:n|θ)dθ.

So, mixing over θ with w to get convergence in m lets us
see that the limit is

Iĝ(A) = IΘ(A) =

{
1 Θ = θ ∈ A
0 Θ = θ ∈ Ac

Since Π(IΘ(A) = 1) = Π(A), under m, as n→∞

Π(A|y1:n)→ Π(A)

It looks like we’re nowhere. But:
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Getting the posterior

Take π(θ) to be the unknown π(θ|y1:n). Then

Π(A|y1:n, yn+1:N)
m−→ Π(A|y1:n)

as N →∞.
Want analogous results for posterior density, posterior
mean, posterior predictives and predictive EDF’s.
Especially to justify the forward predictive sampling that
generates the missing data for the algorithm.
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Best guesses

Using standard asymptotics and martingale convergence:

Em(Θ|y1:n,Yn+1:N)

{ pθ−→ θ
m−→ (Θ|y1:n).

.

This convergence is why posterior means work to give the
posterior.
Similar results for π(θ|y1:n,Yn+1:N), m(yn+i+1|y1:n+i), and
F̂ (yn+i+1|y1:n+i).
Doob’s theorem gives convergences to random variables
that appear unrelated to the sequence converging.

B. Clarke



Review
Martingales and Modes of Convergence

A Visit to Asymptopia

In context

Everything is going to a function of Θ under m.
Thus: The algorithm is an implementation of martingale
convergence under m by repeated sampling from EDF
predictives over vectors yn+1:N for large N.
The ‘missing’ data generated from the m(yn+i+1|y1:n+i)’s
gives M independent copies of θ̄N that can generate a
consistent estimate of the posterior.
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Intuition for Doob’s Theorem

Theorem 6.10 from Ghosal and van der Vaart (2017):
Under regularity conditions,

∃ f : Y∞ −→ Ω

so that ∀θ ∈ Ω, f (y∞) = θ, a.s., in Pθ.
Nice estimators like posterior means θ̄ = E(Θ|y1:n) have
this property.
This gives a ‘foliation’ of Y∞ under the pθ ’s:

Y∞ =
·
∪θ∈Ω{y∞| ˆθ(y∞) = θ} ≡

·
∪θ∈ΩVθ

with Vθ ∩ Vθ′ = φ and Pθ(Vθ′) = 0, for θ 6= θ′; Pθ(Vθ) = 1.
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Strings of data

Note the Vθ ’s are big sets – in particular they are closed
under permutation and finite dimensional perturbation.

But: Under M we have M(Vθ) = 0 even as M(
·
∪θ∈ΩVθ) = 1.

Loosely, Chen (1985) explains how Bayes convergences
are functions of strings of data, i.e., which Vθ has the data.
So, convergences in M necessarily give random variables
as limtis because they mix over the Vθ ’s.
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In context

Many strings of data yn+1:N are generated, from many Vθ ’s
so the θ̄’s fill out the range of π(·|y1:n) as a representative
sample of the posterior.
So, in Ω× Y∞, we can have conceptually a data point
(θ, y1:∞) and a ‘density’ value π(θ, y1:∞) for it.
Maybe better not to write densities on Y∞ (since it’s not
clear what dominating measure to use) and think only in
terms of distributions. Thus use M not m.
In fact, θ and y1:∞ have to match i.e., y1:∞ ∈ Vθ.
Thus θ∞ = θ(Y1:∞) makes sense as does
θ(y1:n,Yn+1:∞)

m∼ π(θ|y1:n).
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Summary

This is a timely paper.
It gives a predictive technique (using future sampling or
‘missing’ data) to compute a finite n posterior.
This technique qualitatively changes the
Statistician-Scientist dialog by focusing on m(yi+1|y1:i).
Remains to be done in practice more broadly.
The intuition changes dramatically when you change the
mode from pθ to M. Central to Bayesian thinking.
Some differences/convergences have been worked
out..But systematically? Common knowledge?
Predictive techniques are not just for prediction.
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