Comment on: 'Predictive Inference: A Path Towards Objectivity'

B. Clarke

Dept. of Statistics U. Nebraska-Lincoln

September 10, 2022

イロン 不得 とくほ とくほとう

3

・ロン・西方・ ・ ヨン・ ヨン・

2

- Forward predictive sampling is a new technique for finding an objective posterior.
- In this sort of predictive modeling the dialog between Statistician and Scientist is how to update a predictive model rather than selecting prior and likelihood.
- In this conceptualization of the Statistician-Scientist dialog, modeling means ensuring that predictive updates don't drift from the data generator rather than finding a likelihood (to eliminate bias) or prior selection (to summarize pre-experiemental information).
- Uncertainty quantification is derived from the unseen data.

ヘロト 人間 ト ヘヨト ヘヨト

Setting

Fundmental Equation:

$$\pi(heta \mid extsf{y}_{ extsf{obs}}) = \int \pi(heta \mid extsf{y}_{ extsf{comp}}) p(extsf{y}_{ extsf{mis}} \mid extsf{y}_{ extsf{obs}}) \mathrm{d} extsf{y}_{ extsf{mis}}.$$

The focus is the posterior predictive $p(y_{mis} | y_{obs})$.

- To model the data, it is enough to specify p(y_{mis} | y_{obs}) directly; the prior does not appear.
- Therefore seek objective predictives not objective priors.
- Use EDF to get a one-step-ahead objective predictive:

$$P(Y_{n+1}|y_{1:n}) = (1/n) \sum_{i=1}^{n} \delta_{y_i}$$

Predictives for Y_{n+2} , Y_{n+3} etc. similar.

Procedure

• The outcomes from the one-step ahead predictives give

$$Y_{n+1:\infty} \sim p(y_{n+1:\infty}|y_{1:n}) = p(y_{\mathsf{mis}} \mid y_{\mathsf{obs}})$$

- Feed these into the Fundamental Equation to find the posterior π(θ | y_{obs}).
- Theory: If we have exchangeable data y_{1:n} from density m_n. De Finetti tells us ∃ p_θ, π(·) so that

$$m_n(y_{1:n}) = \int \pi(\theta) p_{\theta}(y_1) \cdots p_{\theta}(y_n) \mathrm{d}\theta.$$

ヘロン 人間 とくほ とくほ とう

э.

• Now, $\pi(\theta|y_{obs}) = \pi(\theta|y_{1:n})$ is well-defined.

Algorithm I

• Given π and p_{θ} we can form $m(y_{n+1}|y_{1:n})$:

$$m(y_{n+1}|y_{1:n}) = \int p_{\theta}(y_{n+1})\pi(\theta|y_{1:n})\mathrm{d}\theta$$

- Draw a y_{n+1} from $m(y_{n+1}|y_{1:n})$. Now we we have $y_{1:n+1}$ and $m(y_{1:n+1}) = m(y_{n+1}|y_{1:n})m(y_{1:n})$.
- So, we could in principle form (but we don't)

$$\pi(\theta|y_{1:n+1}) = \pi(\theta)p_{\theta}(y_{1:n+1})/m(y_{1:n+1}).$$

In fact, for objectivity, we use the predictive EDF in place of m(y_{n+1}|y_{1:n})'s to generate y_{n+1}.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Algorithm II

Using the posterior we could find find

$$ar{ heta}_{n+1} = E(\Theta|y_{1:n+1}) = \int heta \pi(heta|y_{1:n+1}) \mathrm{d} heta$$

(but we don't). We find $\bar{\theta}$ using the outomes of the predictive EDF's.

- Repeat this procedure *N* times for n + 1, n + 2, n + 3, and so on up to n + N to get $\bar{\theta}_{n+N}$.
- Write $\bar{\theta}_{n+N} = \bar{\theta}_{n+N,1}$ and repeat the above procedure M times to get the sequence $\bar{\theta}_{n+N,1}, \ldots, \bar{\theta}_{n+N,M}$.
- Use the sequence of length *M* to form $\hat{\pi}(\theta|y_{1:n})$.
- Can show $\hat{\pi}(\theta|y_{1:n}) \rightarrow \pi(\theta|y_{1:n})$ in various modes in *m*.

ヘロト 人間 ト ヘヨト ヘヨト

Missing data

- Original paper on reference priors (JRSSB 1979) described missing data as the result of infinite repetitions of an experiment that we didn't do.
- In particular, asymptotically maximizing

 $E_m D(w(\cdot) \| w(\cdot | Y^n))$

over all the missing data for each n gives the prior w that makes the prior and posterior as far apart as possible in expected (in m) KL distance.

- *w*_{opt} is defined asymptotically and ensures the missing data is maximally informative, in *m*.
- This is the same concept of missing information and mode as used here. Maybe we should think this way more often.

Martingales and Modes of Convergence A Visit to Asymptopia

Martingales

- Easy to see that E_mπ(θ|Y_{1:n}) = π(θ). So, updating adds no information under m.
- More is true: $E(\pi(\theta|Y_{1:n+1})|Y_{1:n}) = \pi(\theta|Y_{1:n})$. So the posterior density is a martingale under *m*.
- So is any predictive: $E(m_n(\cdot|Y_{1:n+1})|Y_{1:n}) = m(\cdot|Y_{1:n}).$
- This is typical for conditioned quantities that have a limit, e.g., have finite absolute moments.
- Thus: Same is true if we replace π(θ) by π(θ|y_{1:n}) and adjust the conditioning accordingly.
- Not true under IID models like p_{θ} .
- Thus, $E(\Theta|y_{1:n})$ is a martingale under *m* and converges as $n \to \infty$ to what? Spoiler: Θ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Martingales and Modes of Convergence

A Visit to Asymptopia

Let's look at convergences under m

• If $\theta \in A$ then under P_{θ} ,

$$\Pi(\boldsymbol{A}|\boldsymbol{y}_{1:n}) = \frac{\int_{\boldsymbol{A}} \pi(\boldsymbol{\theta}) \boldsymbol{p}(\boldsymbol{y}_{1:n}|\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}}{\int_{\Omega} \pi(\boldsymbol{\theta}) \boldsymbol{p}(\boldsymbol{y}_{1:n}|\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}} \to 1.$$

• If $\theta \in A^c$ then under P_{θ} ,

$$\Pi(A|y_{1:n}) = \frac{\int_A \pi(\theta) p(y_{1:n}|\theta) d\theta}{\int_\Omega \pi(\theta) p(y_{1:n}|\theta) d\theta} \to 0.$$

ヘロト 人間 とくほとくほとう

1

• In *m*, Lijoi et al. (2004) Theorem 1 gives $\exists \hat{g}$ random

$$\Pi(A|y_{1:n}) \to I_{\hat{g}}(A).$$

Martingales and Modes of Convergence A Visit to Asymptopia

Getting back ⊖

- Recall for any A, $m(y_{1:n}) = \int_A \pi(\theta) p(y_{1:n}|\theta) d\theta + \int_{A^c} \pi(\theta) p(y_{1:n}|\theta) d\theta.$
- So, mixing over θ with w to get convergence in m lets us see that the limit is

$$I_{\hat{g}}(A) = I_{\Theta}(A) = egin{cases} 1 & \Theta = heta \in A \ 0 & \Theta = heta \in A^{lpha} \end{cases}$$

• Since $\Pi(I_{\Theta}(A) = 1) = \Pi(A)$, under *m*, as $n \to \infty$

 $\Pi(A|y_{1:n}) \to \Pi(A)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• It looks like we're nowhere. But:

Martingales and Modes of Convergence A Visit to Asymptopia

Getting the posterior

• Take $\pi(\theta)$ to be the unknown $\pi(\theta|y_{1:n})$. Then

$$\Pi(A|y_{1:n}, y_{n+1:N}) \stackrel{m}{\longrightarrow} \Pi(A|y_{1:n})$$

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

as $N o \infty$.

 Want analogous results for posterior density, posterior mean, posterior predictives and predictive EDF's.
 Especially to justify the forward predictive sampling that generates the missing data for the algorithm.

Best guesses

• Using standard asymptotics and martingale convergence:

$$E_m(\Theta|y_{1:n}, Y_{n+1:N}) \begin{cases} \xrightarrow{p_{\theta}} \theta \\ \xrightarrow{m} (\Theta|y_{1:n}). \end{cases}$$

This convergence is why posterior means work to give the posterior.

.

ヘロト ヘアト ヘビト ヘビト

- Similar results for $\pi(\theta|y_{1:n}, Y_{n+1:N})$, $m(y_{n+i+1}|y_{1:n+i})$, and $\hat{F}(y_{n+i+1}|y_{1:n+i})$.
- Doob's theorem gives convergences to random variables that appear unrelated to the sequence converging.

Martingales and Modes of Convergence A Visit to Asymptopia

In context

- Everything is going to a function of Θ under *m*.
- Thus: The algorithm is an implementation of martingale convergence under *m* by repeated sampling from EDF predictives over vectors y_{n+1:N} for large N.
- The 'missing' data generated from the $m(y_{n+i+1}|y_{1:n+i})$'s gives *M* independent copies of $\overline{\theta}_N$ that can generate a consistent estimate of the posterior.

ヘロト 人間 とくほとくほとう

Intuition for Doob's Theorem

• Theorem 6.10 from Ghosal and van der Vaart (2017): Under regularity conditions,

$$\exists f: \mathcal{Y}^{\infty} \longrightarrow \Omega$$

so that $\forall \theta \in \Omega$, $f(y^{\infty}) = \theta$, a.s., in P_{θ} .

- Nice estimators like posterior means θ

 Ē = *E*(Θ|*y*_{1:n}) have this property.
- This gives a 'foliation' of \mathcal{Y}^{∞} under the p_{θ} 's:

$$\mathcal{Y}^{\infty} = \dot{\bigcup}_{\theta \in \Omega} \{ y^{\infty} | \theta(\hat{y}^{\infty}) = \theta \} \equiv \dot{\bigcup}_{\theta \in \Omega} V_{ heta}$$

イロン 不得 とくほ とくほ とうほ

with $V_{\theta} \cap V_{\theta'} = \phi$ and $P_{\theta}(V_{\theta'}) = 0$, for $\theta \neq \theta'$; $P_{\theta}(V_{\theta}) = 1$.

Strings of data

- Note the V_θ's are big sets in particular they are closed under permutation and finite dimensional perturbation.
- But: Under *M* we have $M(V_{\theta}) = 0$ even as $M(\bigcup_{\theta \in \Omega} V_{\theta}) = 1$.
- Loosely, Chen (1985) explains how Bayes convergences are functions of strings of data, i.e., which V_{θ} has the data.
- So, convergences in *M* necessarily give random variables as limits because they mix over the V_{θ} 's.

ヘロト 人間 とくほとくほとう

In context

- Many strings of data y_{n+1:N} are generated, from many V_θ's so the θ
 [¯]s fill out the range of π(·|y_{1:n}) as a representative sample of the posterior.
- So, in Ω × 𝒴[∞], we can have conceptually a data point (θ, 𝒴_{1:∞}) and a 'density' value π(θ, 𝒴_{1:∞}) for it.
- Maybe better not to write densities on 𝒴[∞] (since it's not clear what dominating measure to use) and think only in terms of distributions. Thus use *M* not *m*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- In fact, θ and $y_{1:\infty}$ have to match i.e., $y_{1:\infty} \in V_{\theta}$.
- Thus $\theta_{\infty} = \theta(Y_{1:\infty})$ makes sense as does $\theta(y_{1:n}, Y_{n+1:\infty}) \stackrel{m}{\sim} \pi(\theta|y_{1:n}).$

Summary

- This is a timely paper.
- It gives a predictive technique (using future sampling or 'missing' data) to compute a finite n posterior.
- This technique qualitatively changes the Statistician-Scientist dialog by focusing on m(y_{i+1}|y_{1:i}). Remains to be done in practice more broadly.
- The intuition changes dramatically when you change the mode from p_{θ} to *M*. Central to Bayesian thinking.
- Some differences/convergences have been worked out..But systematically? Common knowledge?
- Predictive techniques are not just for prediction.